SEQUENCE LISTING TECH CENTER 1600/2900 <110> Miao, Carol Kay, Mark <120> Liver-Specific Gene Expression Cassettes, and Methods of Use <130> UOFW-1-17396 <150> US 60/212,902 <151> 2000-06-20 <160> 18 <170> PatentIn version 3.0 <210> 1 <211> 1438 <212> DNA <213> HomoSapien <400> 1 | gtt | ttgtttcc | ttttttaaaa | tacattgagt | atgcttgcct | tttagatata' | gaaatatctg | 60 | |-----|----------|------------|------------|------------|-------------|------------|-------| | at | gctgtctt | cttcactaaa | ttttgattac | atgatttgac | agcaatattg | aagagtctaa | 120 | | cag | gccagcac | gcaggttggt | aagtactggt | tctttgttag | ctaggttttc | ttcttcttca | 180 | | ttt | tttaaaac | taaatagatc | gacaatgctt | atgatgcatt | tatgtttaat | aaacactgtt | . 240 | | cag | gttcatga | tttggtcatg | taattcctgt | tagaaaacat | tcatctcctt | ggtttaaaaa | 300 | | aat | ttaaaagt | gggaaaacaa | agaaatagca | gaatatagtg | aaaaaaata | accacattat | 360 | | tti | ttgtttgg | acttaccact | ttgaaatcaa | aatgggaaac | aaaagcacaa | acaatggcct | 420 | | tai | tttacaca | aaaagtctga | ttttaagata | tatgacattt | caaggtttca | gaagtatgta | 480 | | ate | gaggtgtg | tctctaattt | tttaaattat | atatcttcaa | tttaaagttt | tagttaaaac | 540 | | ata | aaagatta | acctttcatt | agcaagctgt | tagttatcac | caaagctttt | catggattag | 600 | | gaa | aaaatca | ttttgtctct | atgtcaaaca | tcttggagtt | gatatttggg | gaaacacaat | 660 | | act | tcagttga | gttccctagg | ggagaaaagc | aagcttaaga | attgacataa | agagtaggaa | 720 | | gti | tagctaat | gcaacatata | tcactttgtt | ttttcacaac | tacagtgact | ttatgtattt | 780 | | CC | cagaggaa | ggcatacagg | gaagaaatta | tcccatttgg | acaaacagca | tgttctcaca | 840 | | 998 | aagcattt | atcacactta | cttgtcaact | ttctagaatc | aaatctagta | gctgacagta | 900 | τ. | ccaggatcag | gggtgccaac | cctaagcacc | cccagaaagc | tgactggccc | tgtggttccc | 960 | |------------|-------------|------------|------------|------------|------------|------| | actccagaca | tgatgtcagc | tgtgaaatcg | acgtcgctgg | accataatta | ggcttctgtt | 1020 | | cttcaggaga | cattitgttca | aagtcatttg | ggcaaccata | ttctgaaaac | agcccagcca | 1080 | | gggtgatgga | tcactttgca | aagatcctca | atgagctatt | ttcaagtgat | gacaaagtgt | 1140 | | gaagttaacc | gctcatttga | gaactttctt | tttcatccaa | agtaaattca | aatatgatta | 1200 | | gaaatctgac | cttttattac | tggaattctc | ttgactaaaa | gtaaaattga | attttaattc | 1260 | | ctaaatctcc | atgtgtatac | agtactgtgg | gaacatcaca | gattttggct | ccatgcccta | 1320 | | aagagaaatt | ggctttcaga | ttatttggat | taaaaacaaa | gactttctta | agagatgtaa | 1380 | | aattttcatg | atgttttctt | ttttgctaaa | actaaagaat | tattctttta | catttcag | 1438 | | <210> 2 | | | • | | | | <210> 1413 <211> <212> DNA HomoSapien <213> <220> <221> CDS (30)..(1412)<222> <400> accactttca caatctgcta gcaaaggtt atg cag cgc gtg aac atg atc atg 53 Met Gln Arg Val Asn Met Ile Met 101 gca gaa tca cca ggc ctc atc acc atc tgc ctt tta gga tat cta ctc Ala Glu Ser Pro Gly Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu 20 agt gct gaa tgt aca gtt ttt ctt gat cat gaa aac gcc aac aaa att 149 Ser Ala Glu Cys Thr Val Phe Leu Asp His Glu Asn Ala Asn Lys Ile 35 25 30 197 ctg aat cgg cca aag agg tat aat tca ggt aaa ttg gaa gag ttt gtt Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val 45 55 245 caa ggg aac ctt gag aga gaa tgt atg gaa gaa aag tgt agt ttt gaa Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu 65 293 gaa gca cga gaa gtt ttt gaa aac act gaa aga aca act gaa ttt tgg | | | | | | | | | | | , | 1 | _, | -2 | 5 1 | | | | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|-------| | | | 75
: | | | Phe | | 80 | | ٠ | | | 85 | | | • | | | | aag
Lys | cag
Gln
90 | tat
Tyr | gtt
Val | gạt
Asp | gga
Gly | gat
Asp
95 | cag
Gln | tgt
Cys | gag
Glu | tcc
Ser | aat
Asn
100 | cca
Pro | tgt
Cys | tta
Leu | aat
Asn | 341 | | | ggc
Gly
105 | ggc
Gly | agt
Ser | tgc
Cys | aag
Lys | gat
Asp
110 | gac
Asp | att
Ile | aat
Asn | tcc
Ser | tat
Tyr
115 | gaa
Glu | tgt
Cys | tgg
Trp | tgt
Cys | ccc
Pro
120 | 389 | | | ttt
Phe | gga
Gly | ttt
Phe | gaa
Glu | gga
Gly
125 | aag
Lys | aac
Asn | tgt
Cys | gaa
Glu | tta
Leu
130 | gat
Asp | gta
Val | aca
Thr | tgt
Cys | aac
Asn
135 | att
Ile | 437 | | | aag
Lys | aat
Asn | ggc
Gly | aga
Arg
140 | tgc
Cys | gag
Glu | cag
Gln | ttt
Phe | tgt
Cys
145 | aaa
Lys | aat
Asn | agt
Ser | gct
Ala | gat
Asp
150 | aac
Asn | aag
Lys | 485 | | | gtg
Val | gtt
Val | tgc
Cys
155 | tcc
Ser | tgt
Cys | act
Thr | gag
Glu | gga
Gly
160 | tat
Tyr | cga
Arg | ctt
Leu | gca
Ala | gaa
Glu
165 | aac
Asn | cag
Gln | aag
Lys | 533 | | | tcc
Ser | tgt
Cys
170 | Glu | cca | gca
Ala | gtg
Val | cca
Pro
175 | ttt
Phe | cca
Pro | tgt
Cys | gga
Gly | aga
Arg
180 | gtt
Val | tct
Ser | gtt
Val | tca
Ser | 581 | | | caa
Gln
185 | act
Thr | tct
Ser | aag
Lys | ctc
Leu | acc
Thr
190 | cgt
Arg | gct
Ala | gag
Glu | gct
Ala | gtt
Val
195 | ttt
Phe | cct
Pro | gat
Asp | gtg
Val | gac
Asp
200 | 629 | | | tat
Tyr | gta
Val | aat
Asn | tct
Ser | act
Thr
205 | gaa
Glu | gct
Ala | gaa
Glu | acc
Thr | att
Ile
210 | ttg
Leu | gat
Asp | aac
Asn | atc
Ile | act
Thr
215 | caa
Gln | 677 | | | agc
Ser | acc
Thr | caa
Gln | tca
Ser
220 | ttt
Phe | aat
Asn | gac
Asp | ttc
Phe | act
Thr
225 | cgg
Arg | gtt
Val | gtt
Val | ggt
Gly | gga
Gly
230 | gaa
Glu | gat
Asp | 725 | | | gcc
Ala | aaa
Lys | cca
Pro
235 | ggt
Gly | caa
Gln | ttc
Phe | cct
Pro | tgg
Trp
240 | cag
Gln | gtt
Val | gtt
Val | ttg
Leu | aat
Asn
245 | ggt
Gly | aaa
Lys | gtt
Val | 773 | | | gat
Asp | gca
Ala
250 | Phe | tgt
Cys | gga
Gly | ggc | tct
Ser
255 | atc
Ile | gtt
Val | aat
Asn | gaa
Glu | aaa
Lys
260 | tgg
Trp | att
Ile | gta
Val | act
Thr | 821 | | | gct
Ala
265 | Ala | cac
His | tgt
Cys | gtt
Val | gaa
Glu
270 | Thr | ggt
Gly | gtt
Val | aaa
Lys | att
Ile
275 | aca
Thr | gtt
Val | gtc
Val | gca
Ala | ggt
Gly
280 | 869 | · kic | | | ٠ | | • | | | | | | | | | | | | | | . 1 | | gaa
Glu | cat
His | aat
Asn | att
Ile | gag
Glu
285 | gag
Glu | aca
Thr | gaa
Glu | cat
His | aca
Thr
290 | gag
Glu | caa
Gln | aag
Lys | cga
Arg | aat
Asn
295 | gtg
Val | | 917 | |-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|------| | att
Ile | cga
Arg | att
Ile | att
Ile
300 | cct
Pro | cac
His | cac
His | aac
Asn | tac
Tyr
305 | aat
Asn | gca
Ala | gct
Ala | att
Ile | aat
Asn
310 | aag
Lys | tac
Tyr | | 965 | | aac
Asn | cat
His | gac
Asp
315 | att
Ile | gcc
Ala | ctt
Leu | ctg
Leu | gaa
Glu
320 | ctg
Leu | gac
Asp | gaa
Glu | ccc
Pro | tta
Leu
325 | gtg
Val | cta
Leu | aac
Asn | * | 1013 | | agc
Ser | tac
Tyr
330 | gtt
Val | aca
Thr | cct
Pro | att
Ile | tgc
Cys
335 | att
Ile | gct
Ala | gac
Asp | aag
Lys | gaa
Glu
340 | tac
Tyr | acg
Thr | aac
Asn | atc
Ile | | 1061 | | ttc
Phe
345 | ctc
Leu | aaa
Lys | ttt
Phe | gga
Gly | tct
Ser
350 | ggc
Gly | tat
Tyr | gta
Val | agt
Ser | ggc
Gly
355 | tgg
Trp | gga
Gly | aga
Arg | gtc
Val | ttc
Phe
360 | ÷ | 1109 | | cac
His | aaa
Lys | Gly
ggg | Arg | tca
Ser
.365 | gct
Ala | tta
Leu | gtt
Val | ctt
Leu | cag
Gln
370 | tac
Tyr | ctt
Leu | aga
Arg | gtt
Val | cca
Pro
375 | ctt
Leu | | 1157 | | gtt
Val | gac
Asp | cga
Arg | gcc
Ala
380 | aca
Thr | tgt
Cys | ctt
Leu | cga
Arg | tct
Ser
385 | aca
Thr | aag
Lys | ttc
Phe | acc
Thr | atc
Ile
390 | tat
Tyr | aac
Asn | | 1205 | | aac
Asn | atg
Met | ttc
Phe
395 | tgt
·Cys | gct
Ala | ggc | ttc
Phe | cat
His
400 | gaa
Glu | gga
Gly | ggt
Gly | aga
Arg | gat
Asp
405 | tca
Ser | tgt
Cys | caa
Gln | | 1253 | | gga
Gly | gat
Asp
410 | Ser | GJ y
ggg | gga
Gly | ccc
Pro | cat
His
415 | gtt
Vaļ | act
Thr | gaa
Glu | gtg
Val | gaa
Glu
420 | Gly | acc
Thr | agt
Ser | ttc
Phe | . : | 1301 | | tta
Leu
425 | Thr | gga
Gly | att
Ile | att
Ile | agc
Ser
430 | tgg
Trp | ggt
Gly | gaa
Glu | gag
Glu | tgt
Cys
435 | Ala | atg
Met | aaa
Lys | ggc | aaa
Lys
440 | | 1349 | | tat
Tyr | gga
Gly | ata
Ile | tat
Tyr | acc
Thr
445 | Lys | gta
Val | tcc
Ser | cgg
Arg | tat
Tyr
450 | Val | aac
Asn | tgg
Trp | att
Ile | aag
Lys
455 | gaa
Glu | | 1397 | | | | | | act
Thr | | | | | | | | | | | | | 1413 | <210> 3 <211> 461 <212> PRT <213> HomoSapien <400> 3 Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr 1 5 10 15 Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu 20 25 30 Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45 Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys 50 55 60 Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn 65 70 75 80 1.1.1 The same to day to Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln 85 90 95 Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 100 105 110 Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys 115 120 125 Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 130 135 140 Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly 145 150 155 160 Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe 165 170 175 Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala 180 185 190 Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu 195 200 205 Thr Ile Leu Asp Asn Ile Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe 210 215 220 Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp 225 230 235 240 Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile 245 250 255 Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly 260 265 270 Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 275 280 285 His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn 290 295 300 Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu 305 310 315 320 Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys Ile 325 330 335 Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr 340 345 350 Val Ser Gly Trp Gly Arg Val Phe His Lys Gly Arg Ser Ala Leu Val 355 360 365 Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg 370 375 380 Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val 405 410 415 Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly 420 425 430 Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser 435 440 445 Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr 450 460 <210> 4 <211> 771 <212> DNA <213> HomoSapien <400> caggeteaga ggeacaeagg agtttetggg eteaceetge eccetteeaa ecceteagtt 60 120 cccatcctcc agcagctgtt tgtgtgctgc ctctgaagtc cacactgaac aaacttcagc 180 ctactcatgt ccctaaaatg ggcaaacatt gcaagcagca aacagcaaac acacagccct ccctgcctgc tgaccttgga gctggggcag aggtcagaga cctctctggg cccatgccac 240 300 ctccaacatc cactcgaccc cttggaattt cggtggagag gagcagaggt tgtcctggcg tggtttaggt agtgtgagag ggtccgggtt caaaaccact tgctgggtgg ggagtcgtca 360 gtaagtggct atgccccgac cccgaagcct gtttccccat ctgtacaatg gaaatgataa 420 480 gttttgtttt ttgagatgga ggtttgctct gtcgcccagg ctggagtgca gtgacacaat 540 600 ctcatctcac cacaaccttc ccctgcctca gcctcccaag tagctgggat tacaagcatg 660 tgccaccaca cctggctaat tttctatttt tagtagagac gggtttctcc atgttggtca geeteageet eccaagtaae tgggattaea ggeetgtgee accaeaeeeg getaattttt 720 771 tctatttttg acagggacgg ggtttcacca tgttggtcag gctcctctag a | <211>
<212> | 5
418
DNA
HOMO | Sapien | | | | • | | |----------------|--------------------------|------------|------------|------------|------------|------------|-----| | | | | | | | | | | | 5
gct | accagtggaa | cagccactaa | ggattctgca | gtgagagcag | agggccagct | 60 | | aagtggt | act | ctcccagaga | ctgtctgact | cacgccaccc | cctccacctt | ggacacagga | 120 | | cgctgtg | gtt | tctgagccag | gtacaatgac | tcctttcggt | aagtgcagtg | gaagctgtac | 180 | | actgccc | agg | caaagcgtcc | gggcagcgta | ggcgggcgac | tcagatccca | gccagtggac | 240 | | ttagccc | ctg | tttgctcctc | cgataactgg | ggtgaccttg | gttaatattc | accagcagcc | 300 | | tcccccg | ttg | cccctctgga | tccactgctt | aaatacggac | gaggacaggg | ccctgtctcc | 360 | | tcagctt | cag | gcaccaccac | tgacctggga | cagtgaatga | tcccctgat | ctgcggcc | 418 | | <211><212> | 6
282
DNA
Bos | taurus | | | ٠. | | | | | 6
gat | caqcctcqac | tataccttct | agttgccagc | catctgttgt | ttgcccctcc | 60 | | | | | | | tcctttccta | | 120 | | gaaattg | cat | cgcattgtct | gagtaggtgt | cattctattc | tggggggtgg | ggtggggcag | 180 | | gacagca | agg | gggaggattg | ggaagacaat | agcaggcatg | ctggggatgc | ggtgggctct | 240 | | atggctt | ctg | aggcggaaag | aaccagctgg | ggctcgagat | CC | | 282 | | <211><212> | 7
1707
DNA
Homo | oSapien | · | | | | | | <400> | 7 | - | | · | ~ | | | | | • | ggatttccaa | ggttaattca | ttggaattga | aaattaacag | ggcctctcac | 60 | | taactaa | tca | ctttcccatc | ttttgttaga | tttgaatata | tacattctat | gatcattgct | 120 | | ttttctc | ttt | acaggggaga | atttcatatt | ttacctgagc | aaattgatta | gaaaatggaa | 180 | | ccactagagg | aatataatgt | gttaggaaat | tacagtcatt | tctaagggcc | cagcccttga | 240 | |------------|------------|------------|------------|------------|------------|-------| | caaaattgtg | aagttaaatt | ctccactctg | tccatcagat | actatggttc | tccactatgg | 300 | | caactaactc | actcaatttt | ccctccttag | cagcattcca | tcttcccgat | cttctttgct | 360 | | tctccaacca | aaacatcaat | gtttattagt | tctgtataca | gtacaggatc | tttggtctac | 420 | | tctatcacaa | ggccagtacc | acactcatga | agaaagaaca | caggagtagc | tgagaggcta | 480 | | aaactcatca | aaaacactac | tccttttcct | ctaccctatt | cctcaatctt | ttaccttttc | 540 | | caaatcccaa | tccccaaatc | agtttttctc | tttcttactc | cctctctccc | ttttaccctc | 600 | | catggtcgtt | aaaggagaga | tggggagcat | cattctgtta | tacttctgta | cacagttata | 660 | | catgtctatc | aaacccagac | ttgcttccat | agtggagact | tgcttttcag | aacataggga | 720 | | tgaagtaagg | tgcctgaaaa | gtttggggga | aaagtttctt | tcagagagtt | aagttatttt | 780 | | atatatataa | tatatatata | aaatatataa | tatacaatat | aaatatatag | tgtgtgtgtg | 840 | | tatgcgtgtg | tgtagacaca | cacgcataca | cacatataat | ggaagcaata | agccattcta | . 900 | | agagcttgta | tggttatgga | ggtctgacta | ggcatgattt | cacgaaggca | agattggcat | 960 | | atcattgtaa | ctaaaaaagc | tgacattgac | ccagacatat | tgtactcttt | ctaaaaataa | 1020 | | taataataat | gctaacagaa | agaagagaac | cgttcgtttg | caatctacag | ctagtagaga | 1080 | | ctttgaggaa | gaattcaaca | gtgtgtcttc | agcagtgttc | agagccaagc | aagaagttga | 1140 | | agttgcctag | accagaggac | ataagtatca | tgtctccttt | aactagcata | ccccgaagtg | 1200 | | gagaagggtg | cagcaggctc | aaaggcataa | gtcattccaa | tcagccaact | aagttgtcct | 1260 | | tttctggttt | cgtgttcacc | atggaacatt | ttgattatag | ttaatccttc | tatcttgaat | 1320 | | cttctagaga | gttgctgacc | aactgacgta | tgtttccctt | tgtgaattaa | taaactggtg | 1380 | | ttctggttca | taccttggct | ttttgtggat | tccattgatg | tgaatcagtc | accctgtatt | 1440 | | tgatgatgca | tgggactact | gacaaaatca | ctctgaccct | gccaagctgc | tgccttctcc | 1500 | | tgccccaacc | tcacccccag | ccaggcctca | ctcttgctag | ttcctttagt | tcttttagtc | 1560 | | aatatattt | tgtcttcgca | tataagtata | aataaacata | tttttaaatt | tcttggctgg | 1620 | | gcccagtggc | tcacgcctat | aatcccagca | cttctggagg | ccaaggtggg | cggatcacct | 1680 | | gaggttagga | gtttcaggcc | aagctta | | | | 1707 | | <210>
<211> | 8
154 | | | | . , | | | |----------------|-------------|--------------|-------------|-------------|------------|---------------|---------| | <212>
<213> | DNA
Homo | Sapien | | | | | | | < 400> | 8 | | | | | | | | gtttgtg | gtgc | tgcctctgaa | gtccacactg | aacaaacttc | agcctactca | tgtccctaaa | 60 | | atgggca | aaac | attgcaagca | gcaaacagca | aacacacagc | cctccctgcc | tgctgacctt | 120 | | ggagctg | 9999 | cagaggtcag | agacctctct | gggc | · | | 154 | | <210>
<211> | 9
328. | | | | | | | | <212>
<213> | DNA
Homo | Sapien | | | | | | | <400> | 9 | | | | | | | | caggcto | caga | ggcacacagg | agtttctggg | ctcaccctgc | ccccttccaa | cccctcagtt | 60 | | cccatco | ctcc | agcagctgtt | tgtgtgctgc | ctctgaagtc | cacactgaac | aaacttcagc | 120 | | ctactca | atgt | ccctaaaatg | ggcaaacatt | gcaagcagca | aacagcaaac | acacageeet | 180 | | ccctgc | ctgc | tgaccttgga | gctggggcag | aggtcagaga | cctctctggg | cccatgccac | 240 | | ctccaa | catc | cactcgaccc | cttggaattt | cggtggagag | gagcagaggt | tgtcctggcg | 300 | | tggttta | aggt | agtgtgagag | ggtccggg | | | · | 328 | | <210> | 1.0 | | | | | | | | <211> | 8 | • | | | | | | | <212> | DNA | | | | | | | | <213> | Arti | ificial Sequ | ience | | | | | | <220> | | | | | | | | | <221> | miso | c_feature | Taran Taran | tor Dinding | Site Conso | ngus Seguence | | | <223> | unr. | -i hepatic i | Nucleal rac | cor binding | Dire couse | nsus Sequence | | | <400> | 10 | | | | | | | | tgtaaca | ag | | | | | | 8 | | | | | | | | | | | <210> | 11 | | | | | | | | <211> | 22 | | | | | | | <212> DNA | <213> | Artificial Sequence | |-------------------------|---| | <220>
<221>
<223> | misc_feature
HNF-1 Alternative Hepatic Nuclear Factor Binding Site Consensus S
equenc | | <400>
cacggat | 11
aaa tatgaacctt gg 22 | | | | | <210> <211> <212> <213> | 12
11
DNA
Artificial Sequence | | <220> | | | | misc_feature | | <223> | HNF-3alpha Hepatic Nuclear Binding Site Consensus Sequence | | <400> | | | tattgay | rttw g | | | | | <210> | 13 | | <211> | 10 | | <212> | DNA | | <213> | Artificial Sequence | | <220>
<221> | misc feature | | <223> | HNF-3beta Hepatic Nuclear Binding Site Consensus Sequence | | | | | | | | <400> | 13 attr | | atattga | • | | <210> | 14 | | <211> | 10 | | <212> | DNA | | <213> | Artificial Sequence | | | | | <220> | ming footure | | <221>
<223> | misc_feature
HNF-4 Hepatic Nuclear Binding Site Consensus Sequence | | ~2237 | Int + Hepacie Maciear Dinaring Dice combenious sequence | <400> 14 10 aagycaayha <210> 15 <211> 10 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> HNF-6 Hepatic Nuclear Binding Site Consensus Sequence <400> 15 10 aaatcaattt <210> 16 <211> 13 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> HNF-6 Alternative Hepatic Nuclear Binding Site Consensus Sequence <400> 16 13 attattgata aaa <210> 17 30 <211> <212> DNA <213> Artificial Sequence <220> <221> misc_feature Human Factor IX cDNA Primer Consensus Sequence <400> 17 30 gatggagatc agtgtgagtc caatccatgt <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Human Factor IX cDNA Primer Consensus Sequence <400> 18 agccacttac atagccagat ccaaatttga 30